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Supporting Information (SI). This supplementary appendix be-
gins by providing additional details regarding data construc-
tion. We then present and discuss additional results that
support the main conclusions of our study:

Additional Data Discussion.

Longitudinal Employer Household Dynamic Files. Although the
LEHD provides essential information for studying the long-run
effects of early-life circumstances for a large fraction of the
U.S. worksforce, several limitations exist. First, the LEHD is
assembled by combining various state’s administrative earn-
ings records. This means that states have varying degrees of
temporal coverage in the main dataset, with most participat-
ing states entering the sample by the late 1990s. The second
challenge is that it is not possible to distinguish between un-
employment and non-participation. For example, we would
observe a missing earnings record for an individual both if
he/she were to move to a state not covered in the LEHD and
if he/she became unemployed or self-employed in a given year.
Since our treatment variable may also covary with this form
of sample attrition, we are careful to construct a sample that
tries to address such concerns.

Specifically, we limit our sample to the 24 states that con-
tinuously contain earnings records between 1998-2007.∗ Fur-
thermore, we limit the analysis sample to individuals who were
born in one of those 24 states.† Workers are able to move
from their state of birth to other states, but they are only in
our sample if they ever work in one of these 24 states between
1998-2007.

Fine-Scaled Weather Data. The underlying data come from a
2.5km×2.5km grid for the contiguous United States and were
produced by (23). In order to preserve the influence of tem-
perature extremes, we first count the number of days in each
of the respective temperature bins for every 2.5km×2.5km
grid×day, and then we average the grids to the county×day,
weighting by the 2000 Census Block population in which the
grid centroid is located. Lastly, for each county×date-of-birth,
we sum the temperature bins over the various focal periods

∗We exclude the year 2008 from our analysis both because some states only have partial quarterly
coverage in 2008. The states in our sample include: CA, CO, FL, GA, ID, IL, IN, LA, MD, ME, MT,
NC, NJ, NM, OR, RI, TX, WA, WI, WV, TN, SC, NV, and VA. Total non-farm employment in these
24 states accounted for 61 percent of the total U.S. non-farm workforce in 2000.

†Formally, we take the full sample of individuals who ever worked in one these 24 states in the
years for which the state is covered within the LEHD by pooling over the individuals in the LEHD
Individual Characteristics Files for all 24 states.

(e.g., the total number of days with mean temperature between
20-24C in the first trimester).

Additional Results. Below, we present and discuss additional
results that support the main conclusions of our study: (1)
exposure to days with very hot temperatures in the prenatal
period and in the first year of life lowers average annual earn-
ings at ages 29-31, and (2) household AC adoption mitigates
nearly all of this observed reduction.

Table S1 presents summary statistics, both for the overall
sample and also by region. We classify our data into regions
based on the Census Bureau’s definition of a Census Region.
There is substantial heterogeneity in temperature and aver-
age annual earnings between ages 29 and 31. Areas in the
Northeast experience far fewer days above 32C than areas in
the Southwest. These translate to differences in the average
number of days during various critical periods of a child’s
development spent in different temperature bins (Panel B). In
addition, the Western states in our sample experienced some
of the smallest changes in AC penetration relative to the states
with hotter climates in the South.

In Fig. S1, we examine the residual variation in earnings by
month of birth and correlate it with the residual variation in
extreme temperatures experienced during gestation by birth
month. Fig. S1a plots average days during gestation for which
the average daily temperature exceeded 32C, conditional on
county-of-birth×race×sex fixed effects. Fig. S1b similarly
plots the conditional average earnings by month of birth for
individuals in our sample.‡

Next, while Table 1 presented results from a single regres-
sion model that included all critical periods jointly, Table S2
instead shows coefficients from separate regression models, one
for each critical period indicated in each row. The magnitudes
reported in Tables 1 and S2 are similar, suggesting that the
effects of a temperature episode in one period of development
may be independent of temperature variation in other periods.

Table S3 explores the robustness of our results to a variety
of different control variables. In order to economize on re-
ported coefficients, we report estimates for a single “summary”
critical period, gestation. We focus on different variants of
model 2, which includes interactions with AC penetration.
Column (1) presents the cross-sectional OLS results relat-
ing earnings at ages 29-31 to temperature exposures during

‡The conditional average measures in both Figs. S1a and S1b come from a regression using
the individual microdata, where the dependent variable is either earnings or temperature, and we
include a set of fixed effects for birth month, a set of fixed effects for county-of-birth×race×sex,
and a set of year fixed effects. Figs. and S1a and S1b plot the coefficients from the birth month
fixed effects, all measured relative to December births.
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Table S1. Summary Statistics

Panel A: Sample Means By Region

Earnings Air Conditioning Temperature Descriptives

Age 29-31 1960 1980 Mean Min Max # of Days
(1) (2) (3) (4) (5) (6) (7)

Overall 24117.69 14.70 57.88 14.66 8.48 20.85 0.32
Census Region
Midwest 26314.44 10.97 58.19 9.95 4.43 15.46 0.01
Northeast 25489.36 13.14 52.90 10.68 5.22 16.15 0.00
South 22705.62 20.05 72.19 17.50 11.37 23.62 0.75
West 24734.85 8.76 35.70 13.91 7.03 20.79 0.23

Panel B: Average Number of Days By Focal Period

1st 2nd 3rd Total 0-3 3-6 6-12
Trimester Trimester Trimester Gestation Months Months Months

Days below 0C 6.92 6.53 6.47 20.08 6.99 7.20 14.05
Days 0-24C 66.94 65.83 64.79 199.05 67.83 67.73 137.56
Days 24-28C 12.24 12.67 12.78 37.98 12.42 12.33 26.93
Days 28-32C 2.80 2.86 2.85 8.57 2.65 2.64 6.25
Days above 32C 0.10 0.11 0.11 0.32 0.10 0.10 0.21

Note: Panel A presents summary statistics for the overall sample and by region. Column (1) is the primary dependent variable in the paper,
which is measured as mean annual earnings of an individual between 29-31 and comes from the LEHD. Columns (2) and (3) of Panel A report the
average fraction of households in our sample in 1960 and 1980 who have air conditioning as reported in the Decennial Census. These averages are
constructed by taking the population weighted average over the county level variable. Columns (4)-(6) report the population weighted temperature
moments in our sample. Column (7) reports the population weighted average number of days above 32C per year. Panel B reports the average
number of days during various critical periods of a child’s development (indicated in column) spent in each of the respective temperature bins
(indicated in rows). The temperature data come from (23).

gestation, controlling for race, sex, and year of birth fixed
effects. Column (2) adds county of birth fixed effects which
reduce some of the residual variation in the cross-sectional
estimates, while also controlling for time-invariant, observed or
unobserved county-level determinants of later-life well-being.
Column (3) adds fixed effects by month of birth to attempt
to control for any seasonal determinants of earnings (such as
socio-economic status and compulsory schooling laws); results
remain similar. Column (4) adds fixed effects for county×day-
of-year to control more granularly for seasonality in later life
outcomes by day of year. Column (6) adds county×day-of-
year×race×sex fixed effects, as in our main specifications.
Column (6)adds birth-state-specific linear time trends, while
Column (7) includes birth-state×birth-year fixed effects in ad-
dition to the race×sex×birth-county×birth-day-of-year fixed
effects. In sum, Table S3 suggests that the non-linear influ-
ence of temperature exposure in utero is robust across model
specifications—the number of days during gestation for which
the average daily temperature exceeded 32C predicts worse
outcomes measured 30 years later, but a large fraction of this
effect is mitigated by AC adoption.

Next, we explore how temperature exposure during gesta-
tion affects the shape of the income distribution for affected co-
horts relative to a counterfactual.§ We begin by constructing a
counterfactual earnings distribution for each county×race×sex
by focusing on individuals in each county×race×sex cell for
which the daily average temperature during gestation did

§Our very large sample sizes preclude us from estimating quantile treatment effects directly using
our micro data.

not exceed 32C. We then calculate the 1st, 5th, 10th, 25th,
50th, 75th, 90th, 95th, and 99th percentiles of the earnings
for this set of individuals (separately by county×race×sex).
We then classify all individuals into bins based on their place
in the “counterfactual” earnings distribution of a particular
county×race×sex. Thus, the dependent variable represents
the fraction of all individuals in the specified percentile of the
sub-32C earnings distribution. Table S4 presents results from
10 separate regressions, one for each quantile. The estimates
suggest that the number of days with average temperatures
exceeding 32C during gestation is correlated with an increase
in the likelihood of being in the bottom half of the earnings
distribution and a decrease in the likelihood of being in the
top half of the earnings distribution. One interpretation of
this result is that the observed mean earnings impacts are
driven both by the extensive and the intensive margins.
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Fig. S1. Conditional Temperature Exposure and Average Earnings by Month of Birth

(a) Average Days> 32C during Gestation
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Note: Each figure plots the coefficient estimates from month of birth indicators, with December the representing the excluded category. Panel A
plots the month of birth coefficients coming from a regression of number of days during gestation for which the daily average temperature exceed
32C regressed against county×race×sex fixed effects, year fixed effects, and month fixed effects. Panel B plots the month of birth estimates from a
regression of average earnings between 29-31 years old (2008$), controlling for county×race×sex fixed effects, year fixed effects, and month fixed
effects. An auxiliary regression comparing the 11 observations in Panel B with the 11 observations in Panel A delivers an R-squared of 0.25.

Table S2. Effects of Temperature over Different Critical Periods on Age 29-31 Annual Earnings

# Days # Days # Days # Days
<0C 24-28C 28-32C 32+C

(1a) (1b) (1c) (1d)

Gestation 1.303 -0.534 -3.434 -28.230∗

(4.051) (1.719) (3.941) (14.714)
1st Trimester 1.912 -0.489 -2.997 -43.252∗∗

(4.407) (2.577) (4.623) (19.966)
2nd Trimester 3.632 -0.369 -0.091 -9.526

(4.036) (2.186) (5.248) (22.160)
3rd Trimester -1.334 0.422 -5.492 -34.572∗∗

(4.167) (2.701) (4.438) (16.933)
0-3 Months -1.469 -2.643 -7.185 -30.439∗∗

(3.010) (2.632) (4.966) (13.507)
3-6 Months -2.888 -1.115 -6.521 -33.225∗∗

(3.839) (2.585) (6.498) (16.124)
6-12 Months -2.936 -1.654 -3.248 -34.316

(3.176) (2.188) (2.745) (23.271)

Note: This table reports regression coefficients from 7 separate regressions, one per row, each corresponding to a version of Equation (1) in the
text. Robust standard errors, clustered by state, are in parentheses. All regressions control for birth-county×day-of-year×race×sex fixed effects,
year fixed effects, and a cubic polynomial in precipitation. ***p< 0.01, **p< 0.05, *p< 0.1.

et al.

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

PNAS | August 21, 2017 | vol. XXX | no. XX | 3



DRAFT

Table S3. Effect of Temperature During Gestation on Age 29-31 Annual Earnings: Model Sensitivity

(1) (2) (3) (4) (5) (6) (7)

# Days <0C -51.992∗∗∗ 11.971∗∗∗ 6.723∗∗ 18.266∗∗ 15.883∗∗ -3.551 0.748
(11.808) (2.612) (2.857) (7.661) (7.364) (3.212) (3.644)

# Days 24-28C -28.765∗ -1.527 0.021 -3.436 -2.539 0.302 -0.059
(14.819) (2.657) (2.996) (4.931) (4.989) (3.999) (3.791)

# Days 28-32C -58.183∗∗∗ -23.008∗∗ -19.816∗∗ -39.094∗∗∗ -40.384∗∗∗ -24.971∗∗ -34.672∗∗∗

(21.880) (9.420) (9.011) (14.779) (15.438) (11.653) (9.688)
# Days 32+C -308.052∗ -99.802∗∗∗ -101.148∗∗∗ -111.547∗∗∗ -95.758∗∗ -46.944∗ -58.610∗∗

(160.648) (34.924) (34.217) (40.950) (40.853) (27.097) (25.451)
# Days <0C ×AC 182.060∗∗∗ -13.207∗∗ -16.498∗∗∗ -55.537∗∗∗ -50.048∗∗∗ -0.051 -3.433

(27.876) (6.497) (5.830) (13.981) (13.091) (8.089) (8.553)
# Days 24-28C ×AC 34.116 -4.071 -1.007 6.063 4.873 0.008 3.987

(24.323) (4.847) (4.922) (8.477) (8.491) (6.017) (5.996)
# Days 28-32C ×AC 102.875∗∗∗ 32.517∗∗ 29.721∗∗ 66.277∗∗∗ 66.339∗∗∗ 44.111∗∗ 59.158∗∗∗

(33.650) (13.604) (13.015) (21.944) (22.840) (18.664) (16.997)
# Days 32+C ×AC 327.112 123.156∗∗∗ 127.810∗∗∗ 157.236∗∗∗ 127.144∗∗ 67.111 83.064∗∗

(215.972) (47.215) (46.786) (54.320) (54.329) (42.917) (41.110)

Race and Sex FE X X X X
County FE X X
Birth Month FE X
County×DOY FE X
County×DOY×Race/Sex FE X X X
State-Trends X
State×Year FE X

Note: This table reports regression coefficients from 7 separate regressions, one per column, each corresponding to a version of Equation (2) in the
text. Robust standard errors, clustered by state, are in parentheses. All regressions control for birth-county×day-of-year×race×sex fixed effects,
year fixed effects, and a cubic polynomial in precipitation. ***p< 0.01, **p< 0.05, *p< 0.1.
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Table S4. Effect of Temperature During Gestation on the Distribution of Earnings at Age 29-31

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 ≤ p ≤ 1 1 < p ≤ 5 5 < p ≤ 10 10 < p ≤ 25 25 < p ≤ 50 50 ≤ p ≤ 75 75 < p ≤ 90 90 < p ≤ 95 95 < p ≤ 99 99 < p ≤ 100

# Days < 0C -0.003 -0.029 -0.015 0.050 -0.002 -0.004 0.026 -0.010 -0.020 0.008
(0.010) (0.025) (0.023) (0.036) (0.040) (0.039) (0.044) (0.025) (0.019) (0.012)

# Days 24-28C 0.008 0.002 -0.014 -0.024 0.016 0.030 -0.041 0.018 0.003 0.001
(0.007) (0.013) (0.016) (0.025) (0.029) (0.029) (0.026) (0.015) (0.015) (0.008)

# Days 28-32C 0.002 -0.025 0.005 0.009 0.085∗ 0.011 -0.066 0.010 -0.021 -0.010
(0.012) (0.026) (0.025) (0.042) (0.043) (0.057) (0.047) (0.024) (0.025) (0.017)

# Days 32+C 0.118 -0.114 0.037 0.478∗∗ 0.401∗∗∗ -0.353∗ -0.407∗∗∗ -0.001 -0.007 -0.153
(0.100) (0.091) (0.120) (0.189) (0.149) (0.199) (0.136) (0.074) (0.114) (0.122)

Note: This table reports the results from 10 separate regressions, one per column, each corresponding to a version of Equation (1) in the text. The dependent variable changes in each
regression and is indicated in the column headings. The dependent variable corresponds to the fraction of individuals in a county that fall into the indicated quintile of the “counterfactual”
earnings distribution. The “counterfactual” earnings distribution is calculated separately by each county×race×sex for those individuals in each county×race×sex for which the daily
average temperature did not exceed 32C during gestation. Robust standard errors, clustered by state, are in parentheses. All regressions control for birth-county×day-of-year×race×sex
fixed effects, year fixed effects, and a cubic polynomial in precipitation. ***p< 0.01, **p< 0.05, *p< 0.1.
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We have also explored later ages of exposure to see whether
we continue to observe effects of days with mean temperature
above 32C. Table S5 presents estimates where we include
temperature exposures experienced between 12 and 36 months
post-birth. We see very little effect of exposure in these later
ages. Moreover, effects at 6-12 months are also not statistically
significantly different from zero, albeit with larger standard
errors. To sum up, effects are apparent during the fetal stage
and shortly after birth, and then fade out towards the end of
the first year of life.

Table S5. Effects of Temperature over Different Critical Periods on
Age 29-31 Annual Earnings, Additional Ages of Exposure

# Days # Days # Days # Days
<0C 24-28C 28-32C 32+C

(1a) (1b) (1c) (1d)

1st Trimester -6.059∗∗ -4.064 -10.95∗∗ -56.48∗∗

(2.738) (5.223) (5.069) (27.62)
2nd Trimester -2.235 0.291 -7.823 -23.28

(2.899) (3.874) (8.149) (15.81)
3rd Trimester -3.322 -1.064 -13.70∗∗∗ -58.51∗∗∗

(4.906) (2.717) (4.443) (18.60)
0-3 Months -1.954 -2.271 -19.28∗∗∗ -30.55∗∗∗

(3.234) (4.513) (6.361) (10.98)
3-6 Months -1.769 -2.120 -14.74∗∗ -78.81∗∗∗

(3.093) (5.124) (6.542) (13.71)
6-12 Months 1.730 -0.737 -6.915∗∗ -22.12

(4.543) (2.513) (3.280) (18.92)
1-3 Years -4.889∗∗ -4.964 -2.446 0.462

(2.442) (3.474) (3.778) (6.364)

Note: This table reports regression coefficients from a version of Equa-
tion (1) in the text. Robust standard errors, clustered by state, are
in parentheses. Regressions control for daily mean total suspended
particulate pollution, birth-county×day-of-year×race×sex fixed effects,
year fixed effects, and a cubic polynomial in precipitation. ***p< 0.01,
**p< 0.05, *p< 0.1.

We further explore the sensitivity of our results to mea-
suring earnings at different follow-up ages. Table S6 presents
results, where each column corresponds to a different regres-
sion using earnings at age 28 through 32 as outcomes. Column
(6) replicates estimates from Table 1 as a basis for comparison.
In each earnings year, the results are qualitatively consistent
with the baseline results from before; a day with mean tem-
perature exceeding 32C predicts reductions in earnings at all
of the ages we consider. While there is some heterogeneity
across age categories, the confidence intervals overlap across
all groups.

An important concern for our analysis is that the temper-
ature variation is picking up some unobserved, differential,
time-varying shocks across counties. We investigate this pos-
sibility in a number of ways. First, Table S7 presents results
from our baseline model in which we include leads in tempera-
ture data for the same county-day two years prior to birth. In
other words, for each individual, we calculate his hypothetical
exposure to temperature in each critical period had he or
she been born 2 years before his or her actual date of birth.
Our leads should thus be uncorrelated with the actual treat-
ment effect of exposure during gestation or in the first year of
life. Table S7 presents results from a single regression, where

column (1a) of Table S7 shows the lead coefficients, while
column (1b) shows the coefficients on exposure by trimester
and through age 12 months. For parsimony, we only report
coefficients on the 32C temperature bin (we are not able to
reject the null hypothesis from an F-test that the non-32C
and above temperature coefficients are equal to zero). We find
that exposure to extreme heat two years before birth is uncor-
related with age-30 earnings, while the coefficients on actual
early-life exposure to hot temperature remain negative, larger
in absolute magnitude, and mostly statistically significant.

There is also growing evidence suggesting that there is
important seasonal variation in birth outcomes which corre-
lates with demographic characteristics (22, 32–35). If certain
populations give birth in periods of very warm temperatures
and those groups are more economically disadvantaged for
reasons unrelated to temperature, then we could falsely at-
tribute temperature variation to this omitted variable. For this
reason, all of the results we have presented attempt to control
for this differential seasonality by including race×sex×birth-
county×birth-day-of-year fixed effects. Nevertheless, we inves-
tigate how differential fertility that is correlated with extreme
temperatures may affect conclusions or lead to biases in mod-
els without county×day-of-year×race×sex fixed effects. We
begin by using the LEHD earnings records to form a predictive
earnings index based on sex and race of workers: We use the
individual-level data to estimate earnings regressions control-
ling for sex and race indicators and county×day-of-year fixed
effects, and then use the predicted values from this regression as
a summary index measure of demographic change or sorting as
in (31). We estimate a regression model using this index as the
outcome and with birth-county×birth-day-of-year fixed effects
(as opposed to our baseline race×sex×birth-county×birth-day-
of-year fixed effects) to ask whether there is a relationship
between observable characteristics of the population and the
temperature variation in our data. Table S8 provides mixed
evidence on whether more disadvantaged populations (as in-
dicated by lower predicted earnings) disproportionately expe-
rience extreme temperatures during gestation. Namely, only
one out of the six estimates for very hot days is significant at
10%, and while four out of six signs are negative, the mag-
nitudes of the estimates are much smaller than our baseline
estimates. Nevertheless, we believe that differential fertility
that covaries with the observed temperature variation may
be an important source of bias, and we therefore control for
race×sex×birth-county×birth-day-of-year fixed effects in all
of our other regression models.

It is also worth noting that we would be most concerned
with direct fertility responses biasing the trimester 1 estimates,
given such responses would occur due to temperature swings
during and immediately preceding conception. However, the
positive auto-correlation in temperature would imply that if
the first trimester was downwardly biased, a regression with
separate coefficients for each trimester would then likely lead to
upwardly biased estimates for the second and third trimesters
and other critical periods. Yet, we also find negative earnings
effects in these other periods, which further suggests this issue
is not driving our results.

Another concern is that temperature exposure is correlated
with exposure to air pollution, which, in prior work, we have
found to impact adult earnings (31). To address this possi-
bility, we have investigated how the inclusion of controls for
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Table S6. Effect of Temperature During Gestation on Adult Annual Earnings: Different Ages of Follow-up

(1) (2) (3) (4) (5) (6)
Age 28 Age 29 Age 30 Age 31 Age 32 Age 29-31

# Days < 0C 1.862 2.532 1.882 1.226 2.442 1.303
(5.770) (5.130) (4.002) (3.579) (4.905) (4.051)

# Days 24-28C 1.187 -0.314 -0.814 -0.630 -0.501 -0.534
(1.872) (1.988) (1.826) (1.969) (3.174) (1.719)

# Days 28-32C 5.200 2.730 -2.592 -7.789∗ -20.959∗∗ -3.434
(4.477) (3.860) (4.268) (4.543) (10.184) (3.941)

# Days 32+C -37.747∗∗ -26.518∗ -27.253∗ -27.647∗∗ -61.154∗∗∗ -28.230∗

(18.632) (14.931) (14.455) (13.234) (23.690) (14.714)

Note: This table reports the results from 6 separate regressions, one per column, each corresponding to a version of Equation (1) in the text.
Robust standard errors, clustered by state, are in parentheses. All regressions control for birth-county×day-of-year×race×sex fixed effects, year
fixed effects, and a cubic polynomial in precipitation. ***p< 0.01, **p< 0.05, *p< 0.1.

Table S7. Leads in Temperature Do Not Predict Later-Life Outcomes

# Days # Days
32+C 32+C
(t-2) (t)
(1a) (1b)

1st Trimester -6.053 -44.090∗∗

(10.616) (18.300)
2nd Trimester 9.321 -6.844

(14.944) (19.160)
3rd Trimester -9.073 -27.558∗

(13.829) (15.137)
0-3 Months 2.540 -25.878∗

(13.559) (13.757)
3-6 Months -8.601 -34.787∗∗∗

(14.724) (12.278)
6-12 Months -16.145 -33.280

(10.805) (22.069)

Note: This table reports the results from a single regression correspond-
ing to a version of Equation (1) in the text. We augment Equation (1)
by including leads in the temperature response variables for temper-
atures experienced two years prior to birth. Robust standard errors,
clustered by state, are in parentheses. All regressions control for birth-
county×day-of-year×race×sex fixed effects, year fixed effects, and a
cubic polynomial in precipitation. ***p< 0.01, **p< 0.05, *p< 0.1.

air pollution affects our findings. It is important to note that
only 60 percent of the county×day observations in our original
sample have data on daily pollution monitor readings. For
this sub-sample, we merge on data on the only monitored pol-
lutant during this time period—total suspended particulates
(TSP). We then estimate our baseline regressions, controlling
for the daily mean TSP pollution level. The results, presented
in Table S9, remain very similar to our main estimates. We
thus conclude that our baseline results are robust to including
controls for air pollution. Additionally, this analysis suggests
that pollution levels are not strongly correlated with our tem-
perature variation (conditional on our controls).

Finally, the results in Table 2 suggest that county-level
household AC penetration mitigates nearly all of the observed
long-run effect of extremely hot temperature. One concern

when interpreting these results, is that household AC adop-
tion may be correlated with other unobservable determinants
of later-life well-being, such as income. We investigate this
hypothesis in two ways. First, we estimate whether county-
level changes in household AC adoption are correlated with
other observed changes in that county that may predict later
life outcomes (e.g., per-capita income and population size)
using data from the Bureau of Economic Analysis local area
employment statistics file. In Column (1) of Table S10, we
regress the change in the fraction of households in a county
that have AC between 1970 and 1980 on the log change in
per-capita income over the same time period. We repeat this
exercise using instead the log difference in population growth
between 1970 and 1980 as the explanatory variable in Column
(2). Lastly, Column (3) of Table S10 includes both the log
change in population and the log change in per-capita income
jointly in the regression model. In all three specifications,
we observe little relationship between within-county changes
in per-capita income, changes in population, and changes in
household AC adoption.

The second way in which we test the robustness of our
finding that AC mitigates the effects of temperatures is to
use state-level AC penetration, which is likely to be more
exogenous (conditional on our baseline controls) than county-
level AC adoption. Table S11 presents results where we interact
temperature with average state household AC adoption rates,
and the results remain very similar to before.
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Table S8. The Conditional Relationship Between Temperatures and Predicted Earnings

# Days # Days # Days # Days
<0C 24-28C 28-32C 32+C
(1a) (1b) (1c) (1d)

1st Trimester -1.225∗ -0.246 -0.642 5.212
(0.649) (0.592) (0.869) (3.227)

2nd Trimester -0.100 -0.058 -2.547∗∗ -4.905∗

(0.656) (0.956) (1.072) (2.840)
3rd Trimester -1.238∗ -1.001 -3.304∗∗∗ -6.438

(0.695) (0.716) (1.026) (4.115)
0-3 Months -0.811 -0.536 -1.894∗ -3.189

(0.719) (0.720) (1.034) (3.488)
3-6 Months -0.697 -0.105 -0.754 -2.748

(0.598) (0.743) (1.139) (3.206)
6-12 Months 0.451 0.549 -0.299 1.326

(0.610) (0.445) (0.683) (2.617)

Note: This table reports the results from a single regression corresponding to a version of Equation (1) in the text. The dependent variable in the
regression is a predicted earnings index created in an auxiliary regression of age 29-31 earnings on a series of indicator variables for race and
sex. We use the predictions from the auxiliary regression as the dependent variable in this table as a summary index measure of demographic
sorting/change. Robust standard errors, clustered by state, are in parentheses. All regressions control for birth-county×day-of-year×race×sex
fixed effects, year fixed effects, and a cubic polynomial in precipitation. ***p< 0.01, **p< 0.05, *p< 0.1.

Table S9. Effects of Temperature over Different Critical Periods on
Age 29-31 Annual Earnings, Controlling for Pollution

# Days # Days # Days # Days
<0C 24-28C 28-32C 32+C

(1a) (1b) (1c) (1d)

1st Trimester -2.869 -5.093 -18.72∗∗∗ -78.84∗∗

(4.045) (4.650) (5.987) (31.99)
2nd Trimester -2.422 -1.349 -13.48 -29.56∗

(3.629) (3.750) (8.701) (15.98)
3rd Trimester -7.389 -3.291 -14.62∗∗∗ -77.52∗∗

(4.932) (3.585) (4.819) (30.19)
0-3 Months -6.708∗ -1.931 -19.95∗∗∗ -45.70∗∗∗

(3.443) (4.802) (5.804) (17.70)
3-6 Months -3.161 -1.096 -11.98∗ -94.03∗∗∗

(2.634) (4.758) (6.608) (18.78)
6-12 Months -2.061 -0.274 -5.890∗ -39.42

(4.391) (2.165) (3.041) (27.68)

Note: This table reports regression coefficients from a version of Equa-
tion (1) in the text. Robust standard errors, clustered by state, are
in parentheses. Regression controls for daily mean total suspended
particulate pollution, birth-county×day-of-year×race×sex fixed effects,
year fixed effects, and a cubic polynomial in precipitation. ***p< 0.01,
**p< 0.05, *p< 0.1.
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Table S10. The Relationship Between 1970-1980 Changes in County Level Household AC Adoption and Changes in Population/Income

(1) (2) (3)

∆ Population -0.006 -0.002
(0.047) (0.048)

∆ Income Per Capita -0.018 -0.018
(0.039) (0.040)

N 3072 3072 3072

Note: This table reports estimates from three separate regressions where an observation is a county. The dependent variable in each regression is
the county-level change in the fraction of households with air conditioning between 1970 and 1980. The independent variables are both reported in
log differences, and the coefficients correspond to elasticities. Data on population and income per capita (in real 2008$) are from the BEA’s Local
Area Employment Statistics file. Robust standard errors, clustered by state, are in parentheses. ***p< 0.01, **p< 0.05, *p< 0.1.

Table S11. Adaptation Mechanisms: Air Conditioning Exposure, State-Level AC

# Days # Days # Days # Days
28-32C 32+C 28-32C×AC 32+C×AC

(1a) (1b) (1c) (1d)

1st Trimester -6.781 -97.255 16.425 122.951
(19.765) (74.308) (35.179) (69.478)

2nd Trimester -0.037 -24.283 16.588 105.348
(22.337) (39.566) (35.179) (69.478)

3rd Trimester 5.973 -25.627 -7.247 52.053
(18.905) (25.344) (31.221) (66.372)

0-3 Months -38.424∗∗ -89.775∗∗∗ 65.288∗∗ 171.998∗∗∗

(18.160) (17.791) (28.793) (45.078)
3-6 Months -1.092 -39.524 8.755 79.608

(17.010) (48.803) (25.032) (74.719)
6-12 Months -39.641∗∗∗ -70.785∗∗ 61.000∗∗∗ 135.587∗∗∗

(13.757) (28.366) (19.356) (33.973)

Note: This table reports the results from a single regression model corresponding to a version of Equation (2) in the text. The regression
model augments Equation (1) by including an additional set of temperature response coefficients, now interacted with the fraction of households
in the State that have household air conditioning. Robust standard errors, clustered by state, are in parentheses. All regressions control for
birth-county×day-of-year×race×sex fixed effects, year fixed effects, and a cubic polynomial in precipitation. ***p< 0.01, **p< 0.05, *p< 0.1.
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